Far UV-C Radiation for Personal Protection Against Airborne Pathogens

Xing Li¹, Sung-Jin Park², Christopher Jones³, Christopher Bower³, Ernest R. Blatchley III^{1,4}

¹Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907 ²Eden Park Illumination ³XCMR ⁴Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907

LYLES SCHOOL OF CIVIL ENGINEERING

Environmental and Ecological Engineering

Far UV-C

- Effective for inactivation of airborne pathogens
- Less potential to cause damage to human skin & eyes than longer wavelengths of UV-C radiation
 Skin: 479 mJ/cm², eyes:161 mJ/cm²

Image courtesy of David Sliney

Previous and current TLVs (Blatchley III, et al., 2023) 2

Alterative to filtering mask – Far UV-C mask

- Far UV-C source: 222nm optically-filtered, flat-panel KrCl* plasma lamps
- Numerical simulations:
 - Fluence rate field modeling
 - Computational fluid dynamics
- Laboratory-based measurements:
 - Quantify human exposure: fluence rate field measurement using colorimetric dose cards
 - Quantify aerosolized viral inactivation with T1 phage as challenge agent

Numerical simulation

- A: 3 lamps \perp
- B: 2 lamps ⊥, 1 @ 30º out
- C: 3 @ 30° out
- D: 3 @ 60° out

4

Color development for colorimetric dosimetry cards for a range of well-defined UV222 doses. Doses each card was exposed to are defined by the hand-written labels on each card.

Photographic images of pieces of colorimetric dosimetry card affixed to the face and eyes of a human manikin with the Eden Park mask.

Photographic images of colorimetric dosimetry card pieces at various locations on the faces and eyes of a human manikin after 1 hour irradiation

TLVs - Skin: 479 mJ/cm², eyes:161 mJ/cm² for 8 hours exposure

Photographic images of colorimetric dosimetry card pieces at various locations on the faces and eyes of a human manikin after 1 hour irradiation

Far UV-C mask aerosolized viral inactivation test set up

Flow rate: 2.5 L/min Phage in nebulizer: T1 Phage quantification method: EPA 1602

Condition

3 lamps perpendicular Neb off + lamps off 2 lamps perpendicular, 1 lamps at 30 degrees

outwards

Neb off + lamps off

3 lamps at 30 degrees outwards

Neb off + lamps off

3 lamps at 60 degrees outwards

Neb on + lamps off

Results

Condition	Phage concentration in sampler (PFU/mL)		
E: 2 lamps ⊥	$60 \times 10^2 / 0.5 = 1.2 \times 10^4$		
Neb <mark>on</mark> + lamps off	178 x 10 ² /0.5 = 3.56 x 10 ⁴		

One plasma lamp irradiance measurement before and after 10 min sampling:

- Before: 0.385 mW/cm²
- After: 0.374 mW/cm²

Results

Condition	0	-1	-2	-3	N/N ₀
A: 3 lamps ⊥	TN	47	5	0	0.52
Neb off + lamps off	11	1	0	0	
B: : 2 lamps ⊥, 1 @ 30º out	TN	47	5	2	0.52
Neb off + lamps off	30	4	0	0	
C: : 3 @ 30° out	TN	56	1	0	0.60
Neb off + lamps off	37	6	2	0	
D: 3 @ 60º out	TN	100	14	3	~1
Neb <mark>on</mark> + lamps off	TN	93	8	0	

Summary and Conclusions

- Dosage received by manikin A>B>C>D, E between B and C. Configuration C and D could meet the TLVs.
- Configuration A, B, C display similar inactivation, while configuration C gas lowest human exposure and can meet TLVs
- Configuration D 3 @ 60° out shows close to non inactivation. Dark zones were evident behind lamps, which may have allowed air flow into manikin mouth without being irradiated.
- System performance is constrained by low source output power

Acknowledgements

LYLES SCHOOL OF CIVIL ENGINEERING

Environmental and Ecological Engineering