September 10-13, 2023

Festival City, Dubai, U.A.E.

Next Generation PPE for Real-time Inactivation of Airborne Biological Threats, Part I: Experimental Measurements

> JASON RANDALL GRADUATE RESEARCH ASSISTANT - PURDUE

2

- O DAN

N95 Masks are the standard: \geq 95% separation of particles with $d_p \geq 0.3 \ \mu m$

Lack of consistent testing methods for air disinfection systems

 Effectiveness of devices cannot be reliably or consistently compared or quantified

Project Goal: Develop and demonstrate 'mask' device that employs UVC-based inactivation of airborne pathogens

Background, Project Motivation

Use of UVC for Real Time Treatment of Air: Constraints

 The dose delivered to skin and eyes must be kept below Threshold Limit Values (TLVs)

Wavelength (nm)

PURDUE UV-C Reactors Tested Using Methodology

Pod Reactor LP Hg, 254 nm

Nichia LED Reactor Four LEDs, 282 nm (peak) "Barber Pole" LED Reactor 27 LEDs, 277 nm (peak)

Measuring the Fluence Rate Field in Reactors

- Reactor geometry
- Lamp power
- Lamp placement
- Reflective media
- FR compared with results of numerical simulations (See Part 2)
- Measurements of FR conducted using MFSD
 - Accepts photons from ~all incident angles
 - Allows measurement of local fluence rate
 - Calibration against NIST-calibrated radiometer
 - Mengkai Li presentation Tuesday 4:20 PM

Positioning Device

XCiviR

- Allowed precise positioning in all three directions (x,y,z)
- Position of MFSD was fixed, reactor was moved

PURDUE Locations of Measurements inside Reactors

XCiviR®

Measurements were taken at ten cross-sections (X) and at 1 mm increments along the Y and Z axes

PURDUE MFSD Measurements Inside Nichia Reactor

XCiviR®

- Experimental measurements found a relatively uniform FR field
- Maximum FR values within a cross-section were observed near the centerline and the along the walls of the reactor
- Photon 'recycling' is critical to reactor performance

Impact of Reflective Material on Fluence Rate Field

Reflective Material provided amplification of 12X to 24X, average 18X

Center peak was present only in reflective material measurements

PURDUE Biological Experiments to Test Inactivation

- Experiments were conducted to quantify inactivation of an aerosolized challenge agent by the reactors
- T1 Bacteriophage was selected as the challenge agent
- UVC inactivation of T1 provides a conservative estimate of disinfection efficacy against coronaviruses and most other airborne pathogens

Challenge Agent Experiments Setup

1-Port Collison Nebulizer Reactor

Impinger Bioaerosol Sampler and Water Trap Flow Meter

Vacuum Pump

Results from Direct Flow Reactor Tests $(Q_{air} = 2.5 \text{ L/min})$

Reactor	Test 1 Inactivation (-log ₁₀ (N/N ₀))	Test 2 Inactivation (-log ₁₀ (N/N ₀))	Average Inactivation (-log ₁₀ (N/N ₀))
Barber Pole LED (277 nm)	1.54	2.12	1.83
Nichia LED (282 nm)	2.69	2.11	2.40
LP Hg Pod (254 nm)	3.11	2.66	2.89

N95 Masks: -log₁₀ (N/N₀) ≈ 1.30

'Pod' Reactor Experiments

Goal is to provide physically-meaningful measurements of airborne challenge agent (T1) inactivation using a geometrically-relevant test setup

Results of Pod Reactor Testing

- Inactivation of T1 as a challenge agent was inversely related to combined flow rate
- At all flow rates (5 to 52.5 L/min), the reactor was at least as effective as an N95 mask

- MFSD combined with positioning device allowed measurements of fluence rate field inside the reactors
- Measurements with and without reflective material demonstrated the impact of reflective material on photon recycling
- All three UVC reactors tested provided inactivation at higher rates than the filtration provided by N95 masks for T1 bacteriophage
- Pod reactor tests demonstrated that the Pod reactor provided effective inactivation at a range of flow rates representative of human respiration

Contributing Authors

Dr. Ernest R. Blatchley III

Principal Scientist, Process Engineering Lee A. Rieth Professor, Environmental Engineering **PURDUE** UNIVERSITY.

Christopher Jones

Senior Technical Engineer

BEng (Chemistry) with Honors II.i (UK MSc Engineering equivalent) from Curtin University, Perth Australia

Eric Prast **VP** Product Engineering BA Electrical Engineering - Florida State University

Completing PhD, UNC Chapel Hill: BSE in environmental engineering, Univ. of Michigan, Ann Arbor with a minor in mathematics

Dr. Karl G. Linden

Principal Scientist, Photobiology

Professor, Environmental Engineering Mortenson Professor in Sustainable Development R University of Colorado Boulder

Jason A. Randall

Graduate Research Assistant

Lyles School of Civil Engineering

Xing Li

Graduate Research Assistant

Lyles School of Civil Engineering

Dr. Joel J. Ducoste

Principal Engineer, Modeling and Simulations

Professor, Civil, Construction, and **Environmental Engineering Department** NC STATE UNIVERSITY

Dr. Deborah Mosca VP, Life Science Affairs

PhD Biology - SUNY Buffalo BS Biology/Genetics - Cornell

Richard Rasansky Chief Executive Officer

BS Entrepreneurial Management -Wharton, Computer Science & Electrical Engineering - UPenn

Project Sponsors and Partners

Air Force Research Laboratory

University of Colorado Boulder

Supplemental Information

Double Agar Plaque Assay

Inactivation of T1 by the reactor was quantified by culturing both the UV On and UV Off samples using a Double Agar Plaque Assay

Plaques were counted manually and used to determine N/N₀

UV On, 10⁻¹ Dilution

UV Off, 10⁻³ Dilution

MFSD Calibration

Measurements from the MFSD were calibrated against NIST-calibrated radiometer using the same UVC source

Calibration of 280 nm UVC LED

A calibration curve was developed for each UV source using measurements taken at increasing distance using both the MFSD and radiometer

Nebulizer and Reactor

Nitrogen (20 psi) serves as the carrier gas for the aerosolized T1 in TSB.

Mass flow of TSB containing T1 is 0.05 g/min; gas flow is 2 L/min

Samples are collected for 10 minutes with the reactor powered and then with the reactor turned off.

PURDUE UNIVERSITY.

Bioaerosol Sampler and Vacuum Pump

Samples are collected in a glass impinger containing 10 mL PBS A flow meter is used to ensure the flow rate is kept constant at 2.5 LPM

A vacuum pump is used to pull the carrier gas and the aerosols containing T1